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Introduction

Figure 1. Image object recognition could allow computers to 

guide us through car repair, plant care, and bug bite triage.

Imagine fixing your car by taking a picture of your engine 
and having an AI mechanic guide you through the repairs. 
Or a machine that looks at a rash or bug bite and tells you 
whether it needs professional attention. Or maybe a program 
that looks at your garden and warns you which plants are at 
risk of dying. These ideas may sound like science fiction, but 
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GPU

they are now becoming feasible. Recently, we’ve seen massive 
progress in the development of systems that can automatical-
ly identify the objects in images using a technique known as 
deep learning. This is a breakthrough capability.

Figure 2. Greater theoretical understanding, affordable GPUs, 

and accessible datasets are motivating large advances in image 

object recognition

These systems are emerging now, due to multiple factors. 
First, there’s been strong progress in our theoretical under-
standing of artificial neural networks. Neural networks are 
computational systems made up of individual, interconnect-
ed processing nodes that adapt to new input. While they’ve 
been around since the 1950s, this recent progress has opened 
up entirely new applications.

Second, graphical processing unit (GPU) computation has 
become affordable. GPUs were primarily developed for video 
gaming and similar applications, but are also optimized for 
exactly the kinds of operations that neural networks require.

Finally, large image and video datasets are now available. 
This, more than anything, has motivated and enabled signifi-
cant progress in both research and industry applications. The 
result is that we are now able to build affordable systems that 
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can analyze rich media (images, audio, and video) and auto-
matically classify them with high accuracy rates.

This has strong implications for anyone building data pro-
cessing and analytics systems. Current approaches are, out 
of necessity, largely limited to analysis of text data. This lim-
itation (frequently glossed over by many analytics products) 
comes from the fact that images can be permuted in many 
more ways than sentences. Consider that the English lan-
guage only contains roughly 1,022,000 words, yet each pix-
el from an image can take on any of 16,777,216 unique color 
values. Moreover, a single 1024 x 768-pixel image contains as 
many pixels as Shakespeare had words in all of his plays!

Neural networks, however, are fantastic at dealing with 
large amounts of complex data because of their ability to in-
ternally simplify and generalize their inputs. Already, with 
high accuracy, we are able train machines to identify common 
objects in images. It’s exciting to think that we are now able 
to apply the same kinds of analyses that we’ve been doing on 
text data to data of all types.

The structure of neural networks was initially inspired by 
the behavior of neurons in our brains. While the brain analo-
gy is a romantic one, the relationship between these systems 
and the human brain stops there. These machines do a very 
good job of solving very specific problems but are not yet able 
to approach generalized intelligence. We don’t need to worry 
about the Terminator just yet.1

In this report we explore deep learning, the latest devel-

1 https://timdettmers.wordpress.com/2015/07/27/

brain-vs-deep-learning-singularity/
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Figure 3. Image recognition is 

used by ATMs to identify check 

amounts

opment in multilayered neural networks. These methods 
automatically learn abstract representations of their train-
ing data to perform some sort of classification or regression 
task, where you are training a system to look at examples of 
data with labels and apply those labels to new data. While 
deep learning has implications for many applications, we fo-
cus specifically on image analysis because this is one domain 
where similar results cannot currently be achieved using 
more traditional machine learning techniques. Deep learning 
represents a substantial advancement in image object recog-
nition.

Neural network-based 
image recognition systems 
have actually been used 
in the wild for quite some 
time. One of the first ex-
amples of neural networks 
applied in a product is the 
system that recognizes the 
handwriting on checks de-
posited into ATMs,2 auto-
matically figuring out how much money to add into any ac-
count.

Image analysis is just the beginning for deep learning. In 
the next few years, we expect to see not only apps that can 
look at a photo of leaky plumbing or a damaged car and guide 
you through the repairs, but also apps that offer features such 

2 http://yann.lecun.com/ex/research/
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as realtime language translation in video conferencing3 and 
even machines that can diagnose diseases more accurately 
than a human doctor.

3 http://googleresearch.blogspot.ie/2015/07/how-google-translate-

squeezes-deep.html
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Neural Networks

Neural networks have been around for many years, though 
their popularity has surged recently due to the increasing 
availability of data and cheap computing power. The percep-
tron, which currently underpins all neural network architec-
tures, was developed in the 1950s. Convolutional neural net-
works, the architecture that makes neural image processing 
useful, were introduced in 1980. However, recently new tech-
niques have been conceived that allow the training of these 
networks to be possible in a reasonable amount of time and 
with a reasonable amount of data. These auxiliary algorithmic 
improvements, in addition to computational improvements 
with GPUs, are why these methods are only now gaining pop-
ularity. Moreover, these methods have proven themselves to 
excel at extracting meaning from complex datasets in order 
to properly classify data we didn’t think could be algorithmi-
cally classified before.

In this section we’ll look at the basic concepts needed to 
understand how neural networks function and the recent ad-
vances that have greatly expanded their possible applications.

The Perceptron
The basic elements of a modern neural network— 
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neurons, weighted connections, and biases—were all pres-
ent in the first neural network, the "perceptron," invented by 
Frank Rosenblatt at Cornell Aeronautical Labs in 1958.1 The 
design was grounded in the theory laid out in Donald Hebb’s 
The Organization of Behavior, which gave a method for quan-
tifying the connectivity of 
groups of neurons through 
weights. The initial tech-
nology was an array of 
photodiodes making up an 
artificial retina that sent 
its "visual" signal to a sin-
gle layer of interconnect-
ed computing units with 
modifiable weights. These 
weights were summed to 
determine which neurons 
fired, thus establishing an 
output signal.

Rosenblatt told the New 
York Times that this system 
would be the beginning of 
computers that could walk, talk, see, write, reproduce them-
selves, and be conscious of existence. This field has never 

1 An in-depth treatment of perceptrons can be found at http://page.

mi.fu-berlin.de/rojas/neural/chapter/K3.pdf

2 Image courtesy of Cornell University News Service records, #4-

3-15. Division of Rare and Manuscript Collections, Cornell University 

Library.

Figure 4. The Mark I Perceptron, 

the progenitor of modern neural 

networks.2
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lacked imagination! Soon researchers realized that these 
statements were exaggerated given the state of the current 
technology — it became clear that perceptrons alone were not 
powerful enough for this sort of computing.3 However, this 
did mark a paradigm shift in AI research where models would 
be trained (non-symbolic AI) instead of working based on a 
set of preprogrammed heuristics (the Von Neumann architec-
ture).

As the simplest versions of neural networks, understand-
ing how perceptrons operate will provide us insight into the 
more complex systems popular today. The features of modern 
networks can be viewed as solutions to the original limita-
tions of perceptrons.

Figure 5. The basic elements of a perceptron.

To understand neural networks, we must first unpack the 
basic terminology: individual computational units (neurons) 

3 http://sss.sagepub.com/content/26/3/611
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are connected (i.e., pass information), such that each con-
nection has a weight and each neuron a bias. A number that 
is passed to a neuron via a connection is multiplied by the 
weight of that particular connection, summed together with 
the other inbound connections, and adjusted by the neuron’s 
bias. This result is passed to an activation function that deter-
mines whether the neuron "fires" or not. An active, or fired, 
neuron passes the result on. If the result does not meet the 
activation threshold, then it is not passed on.

Perceptrons are simple binary classifiers that use the above 
computational components, take in a vector input (see Input 
Vectors), and output a 0 or a 1 to indicate the classification. 
This classification is regulated by a set of weights learned 
during the training phase.

The term neuron stems from the biological motivation 
behind neural nets. A primary property of a brain is its abil-
ity to wire (and rewire) neurons together so that, given some 
input signal (e.g., sound in your ear), groups of neurons will 
fire together and activate different brain regions, leading to a 
nervous system or other response. Neurons inside the brain 
receive input voltages from many connections, but only fire 
if the current is strong enough to pass across the synapse and 
carry the electrical signal to them. Similarly, the weights in 
neural networks allow us to bias certain input connections 
more than others to extract the relevant features.

Input Vectors
Like most machine learning models, neural networks re-

quire an input vector to process. An input vector is a way 
of quantifying an input as a series of numbers. Neural net-
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works operate by passing this input through layers of neu-
rons that transform the input vector into your desired output.

If we wanted to quantify the properties of a flower as 
an input vector, we could form a list of numbers describ-

ing the flower’s height, 
the length of the petals, 
three values for the color 
(one for each of the red/
green/blue values), etc.4 
To quantify words the 
bag of words approach 
is generally used, where 
we create a "master" list 
in which every possi-
ble word has a position 
(e.g., "hello" could be 

the 5th word, “goodbye” could be the 29,536th word). Any 
given passage of text can be quantified using this approach 
by simply having a list of 0s and 1s, where a 1 represents that 
that word is present in the passage. An image, on the other 
hand, is already a quantification of a visual scene — com-
puter image formats are simply 2D lists of pixels, which are 
just numbers representing the RGB values. However, when 
creating a vector out of them, we must discard the 2D nature 
of the data and turn it into a flat list, thus losing any spatial 
relationships between the pixels.

4 This exact example is part of a classic “hello world” dataset for 

machine learning called the Iris Dataset.

Figure 6. The petal and sepal 

measurements of an Iris as 

input vector.

1

3

4

7 [1,3,4,7]
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What makes a perceptron interesting is how it handles 
weights. To evaluate a perceptron, we multiply each element 
of the input with a series of weights and then sum them; if 
the value is above a certain activation threshold, the output of 
the perceptron is “on.” If the value is below the threshold, the 
output is “off”:

In this formulation, w encodes the weights being used in 
the calculation and is a vector with the same size as the input, 
x. There is also a bias (also called a threshold), which is simply 
a constant number. The result of the function f(x) defines the 
classification. That is to say, if we train our system such that 0 
means dog and 1 means cat, then f(a)=0 means that the data 
in the vector a represents a dog and f(b)=1 means that b rep-
resents a cat.

While training perceptrons is much simpler than the 
training regimes we will soon get into, they still do need their 
weights tuned in order to be useful. For this, we must define 
a cost function, which essentially defines how far we are from 
our desired output. We will go into this in more detail soon; 
for now, it’s useful to know that we are attempting to con-
verge on a result that minimizes our cost function by slowly 
changing our weights.

The weights in a perceptron describe a linear function 
that separates the input parameter space into two sections 
describing the two possible classifications of the system. As a 
result, only linearly separable problems can be solved. What 
we mean by separability is that our parameter space (all fea-
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tures encoded in our input vector) has the capability of hav-
ing a line drawn through it, which at those values creates a 
boundary between classes of things. This quickly limits the 
effectiveness of perceptrons when applied to more complicat-
ed classification problems.

Figure 7. Perceptrons are only effective in the case of linearly 

separable problems.

Feed-Forward Networks: Perceptrons for  
Real Data

As a result of the single-layer peceptron being limited to 
linearly separable problems, researchers soon realized that 
it could only solve toy problems in its original formulation. 
What followed were a series of innovations that transformed 
the perceptron into a model that is still to this day the bread 
and butter of neural networks: the feed-forward network. 
This involved the modification of most of the original com-
ponents, while retaining the underlying theory of Hebbian 
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learning that originally motivated the perceptron’s design.
The feed-forward neural network is the simplest — but 

most widely used — type of neural network. The model as-
sumes a set of neurons with an arbitrary threshold value and 
connections to the next set of neurons. The first set of neurons 
perform a weighted summation of their input; then, that sig-
nal is fed forward to the next layer. As connections are unidi-
rectional toward the next layer, the resulting network has no 
potential cycles, which simplifies the training procedure.

To understand how these networks work, we’ll first need to 
amend a few of our basic concepts from the perceptron.

Nonlinear Activation and Multiple Layers

Figure 8. Non-linear activation increases the type of problems 

neural networks can be applied to.

Nonlinear activation functions change several things from 
the perceptron model. First, the output of a neuron is no lon-
ger only 0 or 1, but any value from 0 to 1. This is achieved by  
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ƒ(x) = ƒ(x) = tanh(x) 
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replacing the piece-wise function that defines f(x) in the per-
ceptron model with:

where σ is the chosen nonlinear function.5

Next, stacking perceptrons allows for hidden layers, at the 
computational cost of many more weights. Here, every node 
in the new layer gets its value by evaluating f(x) with its own 
set of weights. As a result, the connection between a layer of N 
nodes and M nodes requires M weight vectors of size N, which 
can be represented as a matrix of size N x M.

Figure 9. A multilevel perceptron made by stacking many clas-

sic perceptrons.

Having multiple layers opened up the possibility of mul-
ticlass classification — i.e., classifying more than two items 

5 Common choices for this function are tanh, Softmax (i.e., general-

ized logistic regression), or ReLU.

outputinput hidden layers

single perceptron layer
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(the limit of the perceptron). The final layer can contain mul-
tiple nodes, one for each class we want to classify. The first 
node, for example, can represent "dog," the second "cat," the 
third "bird," etc.; the values these nodes take represent the 
confidence in the classification.

Of course, this introduces the complexity of selecting the 
correct classification. Should we simply accept the class with 
the highest confidence, a maximum likelihood approach? 
Or should we adopt another method (Bayes), where the set 
of probabilities across all possible classes informs a more so-
phisticated choice? Maximum likelihood is generally accept-
ed in practice however, in our prototypes we explore alternate 
methods to make low-confidence classifications useful (see 
Dealing with Low Confidence).

Crucial to these advancements is that they allow classifi-
cations of datasets that are not linearly separable. One way to 
think about this is that the hidden layers perform transforma-
tions on the space to form linearly separable results. But the 
reality is slightly more complicated. In fact, with the addition 
of nonlinearity, a feed-forward neural network can act as a 
universal approximator. That is to say, nonlinearity enables a 
neural network to model any function, with the accuracy pro-
portional to the number of neurons. Adding multiple layers 
makes it easier to attain high-accuracy models and reduces 
the total number of required nodes.

Now it begins to come together how adding more layers 
actually escalates our power to model, classify, and predict. 
However, why is it that neural networks are so much better 
then traditional regression and hierarchical modeling? We’ve  
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mentioned before that we train our models; now, let’s take a 
look at how this is done.

Backpropagation
While these models seem fantastic, it was generally possi-

ble to train comparable models on small datasets using clas-
sic regression techniques. The real breakthrough for neural 
networks was in the learning or training procedure: backprop-
agation. This piece of the puzzle is the reason why neural net-
works outmuscled previous methods.

Backpropagation is an optimization technique for models 
running on labeled data (also known as supervised learning). 
While this algorithm had been known for quite a long time, 
it was only first applied to neural networks in 1986.6 In this 
technique, data is fed through a randomly initialized network 
to identify where the network gets things wrong. This error is 
then "backpropagated" through the network, making subtle 
changes to gently nudge the weights toward better values. The 
goal of this training is to craft our weights and biases to trans-
form our input vector, layer by layer, into a separable space 
(not necessarily linearly separable) where it can be classified. 
This is done with successive use of the chain rule, which can 
be thought of as iteratively seeing how much a given weight 
contributed to a particular result and using the calculated er-
ror to correct the problem.

Think of a musician who is playing electric guitar on a new 
amp for the first time. Her goal will be to make the tonality 

6 http://www.nature.com/nature/journal/v323/n6088/

abs/323533a0.html
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clear and the distortion appropriate for the song or style, even 
though the amp’s settings are initially random. To do this, 
she’ll play a chord with her sound quality goal in mind and 
then start fiddling with each knob on the amp: gain, mid, bass, 
etc. By seeing how each knob relates to the sound and repeat-
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Figure 10. Backpropagation adjusts weights and biases to better 

match target results.
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edly playing the chord, adjusting, and deciding how much 
closer she has gotten to her goal, she will do a kind of training. 
Listening to the chord is like evaluating the objective function, 
and tuning the knobs is like minimizing the cost function.

Figure 11. Example of a possible cost function (mean squared 

error)

While the exact description of the algorithm is outside 
the scope of this report,7 there are several considerations to 
keep in mind. First, the error that is propagated through the 
network is based on the cost function (also known as the loss 
function). The cost function defines “how wrong” the neural 
network was in a given prediction. For example, if a network 
was supposed to predict “cat” for a given image but instead 
says it thinks 60% it was a cat and 40% that it was a dog, the 
loss function would determine how much to penalize the net-
work for the imperfect output. This is then used to teach the 
network to perform better in the future. There are many pos-
sible choices for a loss function, and each one penalizes the 
network differently based on how incorrect it was versus the 

7 For a good in-depth treatment of backpropagation, check out 

http://neuralnetworksanddeeplearning.com/chap2.html
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correct output.8 As we’ll see in Regularization, other terms 
can also be added to the loss function to account for other 
properties we wish to control (for example, we could add a 
term to regulate the magnitude of the weights in the network).

Second, backpropagation is an iterative algorithm and has 
a parameter, the learning rate, that determines how slowly it 
should change the weights. It is always advised to start with a 
small learning rate (generally .001 is used: if a change of 5.0 
would precisely fix the error in the network, a change of .005 
is applied). A small learning rate is crucial to avoid overfitting 
the model to the training data because it limits the memori-
zation of particular inputs. Without this, our networks would 
learn only features specific to the training set and would not 
learn generalization. By limiting the amount the network can 
learn from any particular piece of data, we increase the ability 
of the network to generalize. This is such an important piece 
of neural networks that we even go as far as modifying the 
cost function and truncating the network to help with this 
generalization.

Furthermore, there is no clear time when iterations are 
done, which can cause many problems. To address this, we 
diagnose the network using cross-validation. Specifically, the 
dataset should be split into two parts, the training set and the 
validation set (generally the training set is 80% and the vali-
dation set is 20% of the data). We use the validation set to cal-
culate an error (also called the loss), which is compared to the 
error on the training set. Comparing these two values gives 

8 Common loss functions are categorical cross entropy, mean 

squared error, mean absolute error, and hinged.
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a good idea of how well the model will work on data in the 
wild, since it never learned directly from this validation data. 
Furthermore, we can use the amount of error in the training 
versus the validation sets to diagnose whether training is 
complete, whether we need more data, or whether the model 
is too complex or too simple (see Datasets and Training for 
how to diagnose these problems).

That backpropagation is an iterative algorithm that starts 
with essentially random weights can also lead to suboptimal 
network results. We may have terrible luck and initialize our 
network close to a local minimum (i.e., backpropagation may 
yield a solution that is better than our initial guess of weights, 
but nowhere close to a globally “best” solution). To correct 
this, most researchers train many networks with the same 
hyperparameters but with different randomly initialized 
weights, selecting the model with the best result.

Regularization
Even with our current tools for building neural networks, 

we still face the basic threat that all machine learning entails: 
overfitting. That is, even with a complicated architecture, we 
risk making a neural network that only understands our cur-
rent dataset. To make sure we don’t teach our pony one trick, 
we need to create a robust regularization scheme.

Regularization is a set of methods to ensure the mod-
el better generalizes from the dataset used to train it. Re-
search-wise, this may not seem as glamorous as finding new 
neural architectures, but it is just as important since it allows 
us to train simpler models to learn more complicated classifi-
cations without overfitting. Regularization can be applied to 
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a wide range of models, allowing them to perform better and 
be more robust.9

The first form of regularization that was used is L1 and L2 
regularization, collectively known as weight decay (see Fig-
ure 12). With weight decay, we not only train our network to 
have the correct weights in order to solve the problem, but we 
also try to nudge the weights to be as small as possible. This is 
done by adding an extra term to the loss function that penal-
izes the model when weights grow to be large. The intuition is 
that by forcing weights to be small, we don’t have any one par-
ticular weight dominating the signal. This is good because we 
want as much cooperation between nodes as possible to ac-
count for all features when making a decision. Furthermore, 
when weights are large, it is harder for our optimization pro-
cedure to drastically affect the result. For example, if we had 
the weights [0.4, 0.6, 0.2], we could easily affect the output 
vector from that layer using backpropagation; however, the 
weights [0.4, 256.0, 0.2] would be almost unaffected by a sim-
ilarly backpropagated error. Small weights create a simpler, 
more powerful model.

Figure 12. Weight decay used to regulate weight growth

9 For an in depth treatment of regularization see http://neuralnet-

worksanddeeplearning.com/chap3.html
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A more recent, and very popular, form of regularization 
called dropout10 is widely used. In this method, a random 
subset of neurons “drop out” of a forward and backward pass 
during training. That is to say, with a dropout parameter of 
0.2, during training only 80% of neurons are ever used for for-
ward and backward propagations (and the weight values are 
scaled accordingly to account for the reduced number of neu-
rons). As every neuron learns aspects of the features neces-
sary to do the classification, this means the decision-making 
process is spread more evenly across nodes. Think of this as 
noise being added to the input, making overfitting rarer since 
the network never sees the same exact input twice.

Putting It All Together
In the feed-forward model, we transform the input vector 

by sending it through neurons that use weights and biases 

10 http://www.cs.toronto.edu/~hinton/absps/JMLRdropout.pdf

without regularization
(overfitting)

with regularization

Figure 13. Regularization helps prevent overfitting.
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to compute intermediate values. Then we pass these values 
through a nonlinear activation function to see if the informa-
tion moves forward. We use multiple layers to allow for more 
general feature extraction, since each layer gives our model 
complexity. Finally, we use the result from our output layer to 
calculate how wrong we were with a cost function. Backprop-
agation tells us how to adjust each neuron to improve our re-
sult, and we use regularization and dropout to generalize our 
results and prevent overfitting.

This may seem complex, but this background is sufficient 
to understand, evaluate, and engineer deep learning systems.

The feed-forward net is to neural networks what the Mar-
gherita is to pizza: the foundation for further exploration. 
Most systems you’ll have encountered in the wild prior to re-
cent innovations were feed-forward neural networks: systems 
for things like character recognition, stock market prediction, 
and fingerprint recognition. Having covered the basics, we 
can now start to take you from simple systems to complex, 
emergent ones.

Convolutional Neural Networks: Feed-Forward 
Nets for Images

If deep learning ended with feed-forward neural networks, 
we would have trouble classifying images robustly. So far, our 
inputs have all been vectors; but images are spatial, intrinsi-
cally 2D structures (3D if we include color). What is needed is 
a neural network that can maintain this spatial structure and 
still be trained with backpropagation. Luckily, this is exactly 
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how convolutional neural networks work .11

These networks are quite new. They were first explored in 
1980, and gained wide spread adoption in 1998 in the form 
of the LeNet12 (pioneered by Yann LeCun13) with their ability 
to do hand-written digit recognition. However, in 2003 they 
were generalized and simplified14 into a form which allowed 
them to solve much more complex problems.

As the name states, instead of operating on the matrix 

11 For a good treatment on convolutional neural networks, check 

out http://colah.github.io/posts/2014-07-Conv-Nets-Modular/

12 http://deeplearning.net/tutorial/lenet.html

13 http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf

14 http://citeseerx.ist.psu.edu/viewdoc/download?-

doi=10.1.1.91.1367&rep=rep1&type=pdf

Figure 14. Image transformed into an input vector.
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multiplication between the input and a set of weights, a con-
volutional neural network works on a convolution15 between 
the input and a kernel. The kernel is simply a small matrix 
(generally between 3 x 3 and 8 x 8) that extracts certain spa-
tial features from the image. This sort of technique is used all 
the time in classical computer image processing. For exam-
ple, the Sobel operator that is often used for edge detection 
in images works by convolving a specific set of 3 x 3 matrices 
with the image. With a convolutional net, we aim to learn the 
values for these kernels instead of for the full sets of weights.

The full structure of a convolutional neural network is a 
stacking of several convolutional layers and then several lay-
ers of a classic feed-forward neural network. The convolution-
al layers can be thought of as prepping the data so that the 
feed-forward layers can take advantage of the spatial struc-
ture of the input image. This structure highlights the flexibil-
ity of neural networks in general — we can choose to have the 
convolutional layers feed into a feed-forward neural network 
or any other type of neural network, depending on what the 
problem demands. (In The Future we talk about alternate 
setups used to solve different types of problems, such as cap-
tioning images or training a computer to play video games.)

When defining a layer of a convolutional neural network, 
we specify the number of kernels, how big each kernel is, and 
the "stride" (step size, or number of spaces moved between 
each kernel evaluation). This layer will output a new "image" 
that has a different dimensionality from the input, with spa-

15 For a nice interactive aid in understanding convolutions, check 

out http://setosa.io/ev/image-kernels/
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Figure 15. Convolutional neural networks learn to create kernels 

that encode the spatial features of a 2D image into a 1D feature 

vector. This example shows a kernel for a sharpen filter.

tial features extracted. For example, if our input image was 
227 x 227 x 3 (i.e., 227 x 227 pixels over 3 colors) and we used 96 
kernels of size 11 x 11 with a stride of 4, the output of this layer 
would have the dimensions 55 x 55 x 96. These, in fact, are the 
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exact layer parameters for the ImageNet model.16 In this for-
mulation, each of the 55 x 55 layers is considered a depth slice.

It is important to note that while there are incredibly high 
numbers of inputs and outputs, there are only 96 x 11 x 11 x 3 
weights across the entire layer. With the addition of the 96 bi-
ases, this is a total of 34,944 parameters — substantially fewer 
than the 44,892,219,387 parameters we would have had in a 
normal feed-forward neural network! This is why convolu-
tional neural networks ushered in neural image processing. It 
is amazing how much processing can be done with a convo-
lutional neural network given the relatively small number of 
parameters. The convolutional example above uses the same 
number of parameters as two feed-forward layers of 186 neu-
rons each, quite small for any problem of real interest!

A method known as max pooling,18 which combines the val-

16 http://papers.nips.cc/paper/4824-imagenet-classifica-

tion-with-deep-convolutional-neural-networks

17 Image from http://cs231n.github.io/convolutional-networks/

18 http://people.idsia.ch/~ciresan/data/icsipa2011.pdf

Figure 16. Example of the 96 11 x 11 kernels from an ImageNet 

convolutional neural network17
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ues of pixels close to each other, further reduces the number 
of parameters in convolutional networks. This can happen on 
the input or for any depth slice. Max pooling defines a region, 
typically 2 x 2- or 3 x 3-pixel blocks, and only takes the maxi-
mum value in any block of that size. This is similar to downs-
ampling or resizing an image: it both reduces the dimension-
ality of the data and adds a form of translational invariance 
that safeguards the neural network when the scene is shifted 
in one direction or another (i.e., if most pictures of cats have 
the cat in the center of the image, but we still want it to per-
form well if the cat is on the side of the image). We can see the 
result of these dimensional reductions above: note how the 
resolution of the depth slices is reduced at every layer.

In practice, convolutional networks are used as a feature 
extractor for classic feed-forward networks. A convolution-
al neural network takes an image as input and processes it 
through many layers of convolutions. Once the image has 
been treated through enough layers, the output of the final 
convolutional layer is reshaped into a vector and fed into what 
is called a "fully connected" layer. This may seem like exactly 
what we were avoiding—once we reshape the data into a vec-
tor, we lose the spatial relationships we were trying so hard to 
maintain. The intuition, however, is that after the image has 
been passed through multiple convolution steps, the neurons 
will have been encoded with all the relevant spatial features. 
For example, if the image had a diagonal edge, there would be 
some neurons will have encoded that pattern, and therefore 
rendering the actual spatial data at that point is redundant.

Once in the fully connected layer, we can simply classify 
as before. In fact, the fully connected region of the network 
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is where we actually start making the associations between 
the spatial features seen in the image and the actual classifi-
cations that we require the network to make. One might think 

Figure 14. A simple convolutional neural network processing an 

input image
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of the convolutional steps as simply learning to look at the 
picture the right way (i.e., looking for specific color contrasts, 
edges, shapes, etc.), while the fully connected layers correlate 
the appearance of particular features with classification class-
es. In fact, the spatial features seen by the convolutional lay-
ers are often robust enough that they can be kept static when 
training a network on multiple tasks, while only the weights 
for the fully connected layers are changed from problem to 
problem in a method called.

Fine-tuning has raised the potential of neural networks 
as common components within a service. It allows us to use 
them in transfer tasks: when we take part of a pretrained mod-
el and port it over to a different task by fine-tuning the new 
layers.19 For convolutional networks, this means we can con-
tinue to improve models that encode spatial features while 
utilizing them in diverse classification problems. Task trans-
fer allows us to iterate on specific pieces of our architecture 
while modularly building systems for new problems. In many 
cases, this saves time and computational cost because parts 
of a robust neural network can be connected into new layers 
trained around a particular problem.

What Is Deep?
Having taken the long walk with us through the building 

blocks of this technology, you may still be wondering, “What 
exactly is this deep learning thing?” Since you’re likely to hear 
this term trumpeted by many new companies and the media 
in the near future, we want to make sure it’s given some con-

19 http://arxiv.org/abs/1411.1792
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text—or should we say, depth.
As previously shown, layers in a neural network can be 

stacked as desired, at the cost of computation and the require-
ment for more data. However, with each new layer, the neural 
network is able to create more robust internal representations 
of the data. This can allow a deep neural network to tease out 
very subtle features from the data to accurately classify inputs 
that would cause other models to fail.

It is important to realize, however, that when we speak of 
“deep” learning, we are not simply referring to the number of 
layers. While there is no concrete definition of what “deep” 
means in this context, it is generally accepted that the number 
of causal connections each neuron has is a more accurate rep-
resentation of the depth. That is to say, if a particular neuron’s 
output can affect a large number of other neurons through 
many possible paths, that network is considered deep.20 This 
focus on the number of possible causal connections allows 
us to think of powerful but small architectures as deep. For 
example, simple two-layer recurrent neural networks may not 
have many layers, but the robustness of the neural connec-
tions creates many causal links, resulting in a network that 
can be seen as very deep.

20 See Section 3 in http://arxiv.org/pdf/1404.7828.pdf
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What Neural Networks Are and Are Not

The very term “neural network” invokes cybernetic imag-
ery. We easily fall into the old sci-fi fantasy of thinking, con-
scious machinery. While seductive, this account of what a 
neural network is doing is practically entirely false. Neural 
networks are structurally and functionally dissimilar from 
real brains, even if the brain’s neural connectivity inspired 
the computational infrastructure.

In this section, we’ll 
develop intuition around 
what tasks neural networks 
succeed at and debunk the 
mythology around these 

“artificial brains.” With this 
knowledge, we can evalu-
ate why they aren’t quite 
brains, but still do an im-
pressive job of modeling 
highly complex functions 
that can classify large and 

diverse data—and, importantly, learn how to identify when 
claims around neural networks are being overstated.

Figure 18. Neural networks are 

inspired by the brain, but it is 

important not to think of them 

as actual brains.
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Interpreting a Neural Network
In Neural Networks, we covered the basic architecture 

and computational techniques used to design and train neu-
ral networks. How computer scientists often interpret these 
systems is that we are creating one glorified feature extractor. 
That is, we comprehend our data as having discrete features 
that, once teased out, tell us how that data should be treat-
ed given some classification or prediction goal. This is the 
assumption of separability that essentially means we believe 
our data’s features can be identified, separated, and bounded 
so as to make robust class distinctions. Neural networks are 
tools for extracting out these features and, in turn, making 
classification decisions.

You may remember that with convolutional neural net-
works (which are used for object recognition), we use kernels 
to encode features from smaller sections of our images (e.g., 
detecting an edge). With these features encoded, we can then 
use further layers to separate our feature space. And this is 
the essence of even the most complicated, multilayered neu-
ral networks: layer by layer we are transforming our data, first 
to encode the data’s features and then to filter them based on 
how our model has “learned” to categorize those features. Be-
cause these transformations are nonlinear and we do not ac-
tually know what features each layer is encoding, any further 
interpretation requires a very fine, technical inspection of the 
model in action.

Due to this complexity, many researchers have worked 
on visual techniques that give them insight into what is hap-
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pening at each layer.1 There are many people who specialize 
in gaining practical results (e.g., tuning hyperparameters or 
adding/subtracting layers), but this high-level description is 
about as close as we get to interpreting what these systems 
are actually doing.

You may have seen the images generated by Google’s Deep 
Dream software, which incepts images with psychedelic-look-
ing dogs, buildings, etc.2 This technique was designed to gain 
insight into what the neural network is encoding at a partic-
ular layer. The tactic is to take an already trained network but 
only evaluate it up to the layer we want to inspect. Then, tak-
ing a separate image that we want to "incept" into our neural 
network, we run our inception image up to the layer we want 
to inspect and get its values. Then we run our backpropaga-
tion algorithm, except instead of minimizing our usual cost 
function, we minimize against the values found for the in-
cepted image. Finally, we backpropagate all the way into the 
image, treating it as a modifiable layer rather than fixed input 
data, adjusting its pixel values to get a visual representation 
of what it’s trying to encode.

While this method may seem like a toy and nothing else, it 
provided us with the first insight into the complexity of the 
features that a convolutional neural network was using to do 
its classification. Before, the only way to see what features 
were being extracted was to look at the activation maps (see ; 
however, this does not give us a good holistic view of what is  

1 See, e.g., http://arxiv.org/abs/1506.02078 or http://arxiv.org/

abs/1412.0035

2 https://github.com/google/deepdream
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happening (in fact, it takes quite a bit of expertise to under-
stand anything that is going on in an activation map). But by 
taking an image and forcing the neural network to see cats 
inside of it, we can inspect each layer of the network and gain  
 

Figure 19. A human face “incepted” with a cat’s using Deep 

Dream
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some insight regarding what shapes, colors, and general fea-
tures the model is expecting for such a classification.

Figure 20. Deepdream images resulting from setting the guide 

image at different layer depths in the neural network. Deeper 

layers contain more complex and abstract features.

Google’s method is a taste of how one may be creative in 
figuring out what a neural network is encoding. It is only 
good for visual images, and tells us a limited amount, but it 
allows us a visual—and sometimes creepy—insight into what 
the weights and biases of a particular layer mean.

Limitations
For someone who makes plans and decisions based on 

emerging technologies, it is crucial to have a discerning eye 
for what is achievable and what is far-fetched. Having now 
seen the basic concepts behind neural networks and a func-
tional interpretation, you may already have some inkling as 
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to why these systems are not “strong AI.”3 While neural net-
works are powerful, the brain-like vocabulary is misleading. 
Obviously, they are materially different, but these systems are 
not "brains" from a functional standpoint either.

To begin with, brains have plastic connections—neuron A 
may not always be connected to neuron B at all times—where-
as in neural networks these connections are rigidly defined. 
Further, in brains, everything is a function: even activa-
tion functions are functions since neuronal activations are 
primed by many conditions determined by the local chemical 
state. Neural inhibitors and transmitters modify individual 
synapses, changing both the firing potential and the signals 
transmitted. Rather than accepting input vectors of a specific 
shape, brains adapt to multimodal inputs that are combined 
internally.

All of these functional differences must be taken serious-
ly before we go too far in comparing neural networks to hu-
man intelligence. These descriptions tell us what’s different, 
yet only go so far in characterizing what they amount to in 
the way of limitations. Many of the tasks that we are eager to 
see AI accomplish involve cognitive criteria for success. Un-
derstanding this distinction between cognitive and computa-
tional involves clarifying the difference between learning and 
thinking, as well as processing and integrating information.

As was elaborated in Neural Networks, neural networks 
have a capacity for learning via parameter adjustment. Recall 
that this learning is the result of minimizing a single objec-
tive function defining our task. The existence of the objective 

3 https://en.wikipedia.org/wiki/Artificial_general_intelligence
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function makes learning in neural networks quite different 
from in brains. We will distinguish the role of thinking to 
understand this contrast is because the process of thinking 
involves switching and integrating contexts — something 
neural networks are not yet able to do. Here, learning is the 
feedback system that improves practical results on a task, 
whereas thinking is the process that reflects on the task, our 
goal orientation toward it, the varying approaches we may 
take, etc. In neural network terms, this would imply objec-
tive functions constantly morphing (task redefinition) and 
the shape of input vectors changing (context adjustment) as 
needed. Consider being taught a word, but then asking your 
teacher for a visual demonstration to go along with the syn-
tactic definition—both the visual and auditory contexts aid 
in your learning. Neural networks do not have this flexibility.

An implication of how neural networks are currently de-
signed is that they are processing systems rather than inte-
grating systems. That is, they do not know or care about out-
side information that may be pertinent to their task, or about 
whether their goal is appropriate. They merely act on partic-
ular input shapes, achieving particular output shapes using 
rigidly defined computations. An integrating system requires 
a higher-order functioning that cannot be reduced to any par-
ticular processing task, which itself can include/exclude spe-
cific information and adjust the task. It is integration that is 
needed for cognitive tasks and that must be worked on before 
AI encroaches on the kind of intelligence we dream about in 
our sci-fi fantasies—strong AI.

With that said, we still find neural networks extremely 
useful because they allow us to take a diversity of inputs and 
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model arbitrarily complex functions. Given that developing 
functions for mapping intricate inputs into simple outputs is 
an extremely difficult task, neural networks offer technolo-
gists an incredible service by being able to approximate any 
continuous function capable of being written down. We call 
this the universality of neural networks, and it will be touched 
on in the next section.

Common Misconceptions
Despite the limitations characterized above, neural net-

works continue to be in the press with many fantastical arti-
cles written about them. It seems that every week a new neu-
ral network is devised that reportedly gets closer and closer 
to being able to read your thoughts or interact with you in a 
deeply personal way. However, as you now know, these claims 
are far from the truth. While neural networks are indeed ad-
vancing, we are at a point where either vast improvements 
must be made to the algorithms or we must devise exponen-
tially bigger computers.4

This is because current neural networks are quite limited 
in the generality they can obtain. We are only now reaching 
levels where image classification can be done at an accuracy 
better than that achievable by humans; however, that is only 
for a very focused set of classification labels on a very curated 
dataset (known as the ImageNet dataset, which is used annu-
ally in image recognition competitions).

It has been shown, however, that neural networks do very 

4 Further reading on this topic can be found at https://timdettmers.

wordpress.com/2015/07/27/brain-vs-deep-learning-singularity/
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well on transfer tasks, where the model has been trained on 
one problem and is then applied to a different problem with 
minimal retraining. However, just as before, these tasks must 
have quantifiable objectives, making them very limited in 
scope—a limitation currently affected by the sizes of both the 
models and the datasets we have available to train on.

Furthermore, an aspect of neural networks that is often 
left undiscussed in public is how the exact formulation of the 
data determines our effectiveness. We may feel tempted to 
believe that if we had a large enough neural network and all 
of Facebook’s data, we could predict users' preferences given 
certain online actions. This misconception stems from the 
nature of training on cost functions, since neural networks 
currently only show their real utility for supervised learning 
problems where the correct results are known for the given 
training set. That is, to train the neural network we must have 
a labeled dataset that teaches the model correct relationships 
between input and desired output.

This problem with datasets can also lead to many subtleties 
where a dataset does indeed exist, but is not robust enough to 
fully describe the problem. For example, if we had images of 
news anchors as they were talking about different stories, and 
each image was labeled with the topic of the story the person 
was discussing, would we be able to later determine the topic 
of a story given an image of the news anchor? This might be 
possible in certain cases—for example, if the topic was weath-
er we could probably use the existence of a weather map in 
the background as a giveaway. However, for many other top-
ics there are no cues that could be used to determine what 
is being talked about, since we are simply using the wrong 
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data — we are using images of the anchor when what we real-
ly want is audio or a transcription of what is being discussed! 
This type of problem is quite prevalent, where it seems our 
dataset has the right association, but it is missing the correct 
context needed to find a reasonable solution to the problem.

In the end, neural networks are not magical devices that 
can solve any problem they are given. Instead, they are a way 
of training incredibly large models to solve very high dimen-
sional problems. So as you consider whether or not they are 
right given your problem, or whether to believe someone 
else’s claim to be solving a problem using a neural network, 
here’s a list of questions to ask yourself:

• Can you quantitatively describe the features of your prob-
lem space?

• Does the problem always require the same information to 
solve?

• If you were to give this task to a group of humans, would 
you expect consensus?

• Is the problem’s solution context dependent? If so, does the 
data cover that context?

• Can you verify the correctness of a given output?
• Does the neural network claim to know you better than you 

know yourself?
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Are Neural Networks Right for You?

There are many things to consider when deciding whether 
to use neural networks in your system. While very powerful, 
they can also be very resource intensive to implement and 
to deploy. As a result, it is important to make sure that other 
options have already been exhausted. Trying simpler meth-
ods on a given problem will at the very least serve as a good 
benchmark when validating the effectiveness of the neural 
model. However, for images, non-neural methods are quite 
limited unless auxiliary data is available (for example, qual-
ity-controlled user-generated tags with standard clustering 
and classification algorithms could be a good first-pass solu-
tion).

Picking a Good Model
If a neural model seems like the only solution, one of the 

most important considerations when starting is whether a 
model (particularly a trained model) that solves the problem 
already exists. These pretrained models have the advantage 
of being ready to use immediately for testing and already hav-
ing a predefined accuracy on a given dataset, which may be 
good enough to solve the problem at hand. Getting to those 
accuracies often involves tuning many parameters of the 
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model, called hyperparameters; this can be quite tedious and 
time-consuming, and requires expert-level understanding of 
how the model works in order to do correctly. Even with all 
other hurdles taken care of, simply figuring out a good set of 
hyperparameter values for the model can determine whether 
the resulting model will be usable or not.

There are many pretrained models out there to use. Gitx-
iv is one fantastic resource for new models.1 Caffe, for exam-
ple, provides a model zoo where people can share models in 
a standardized way so they can be easily used. One that is of 
particular interest is the googlenet model, which comes with 
an unrestricted license and does ImageNet classification, out 
of the box, with 68.7% accuracy for predicting the correct tag 
and 89% accuracy for having the correct tag in the top five re-
sults. While some of the models in the zoo are released under 
a commercial-friendly license, many are distributed using a 
non-commercial license (normally as a result of restrictions 
on the underlying dataset). However, these pretrained mod-
els can at least serve as a good basis for testing to see if the 
particular approach is valid for your problem before going 
ahead and training the same model on your own custom data.

Notable Models in the Model Zoo2

•  Places-CNN: Trained on images of various locations and 
of various objects

• FCN-Xs: Segments images to find the locations of objects 
in image

1 http://gitxiv.com

2 https://github.com/BVLC/caffe/wiki/Model-Zoo



Are Neural Networks Right for You? • 51

• Salient Object Subitizing: Finds the number of objects in 
an image

• Binary Hash Codes: Generates semantic image hash 
codes for fast “similar image” retrieva

• Age/Gender: Predicts the age and gender of a person 
through an image

• Car Identification: Identifies the model of a car

Fine Tuning / Transfer Learning
Once a pretrained model is found, it can either be used out-

right or run through a process called fine-tuning.3 In fine-tun-
ing, a pretrained model is used to initialize the values for a 
new model that is trained on new data. This process shows 
how robust neural networks can be — a model trained for one 
purpose can very easily be converted to solving another prob-
lem. For example, a model used to classify images can be fine-
tuned in order to rank Flickr images based on their style.4 A 
benefit of this is that the pretrained model already has some 
abilities in recognizing images, or whatever task it was in-
tended for, which means the fine-tuning training is more fo-
cused and can be done with much less data. For applications 
where a pretrained model that solves the given problem can-
not be found, and an adequately sized dataset is not available, 
it may be necessary to find a "good enough" pretrained mod-
el and use fine-tuning to repurpose it for the given problem. 
As mentioned in the description of Convolutional Neural  

3 http://cs231n.github.io/transfer-learning/

4 http://caffe.berkeleyvision.org/gathered/examples/finetune_

flickr_style.html
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Networks: Feed-Forward Nets for Images, often convolu-
tional layers are reused since their ability to extract objects 
from a scene are not necessarily greatly affected when chang-
ing the downstream classification task at hand.5

Datasets and Training
One of the biggest difficulties with training your own 

neural network is finding a large enough dataset that fits the 
problem space. While deep neural networks can be trained to 
perform a wide variety of tasks, as more layers are added (and 
thus the total number of parameters of the model increases), 
the amount of data necessary for training also increases. As a 
result, when deciding whether it is possible to train your own 
neural network to solve a problem, you must consider two 
main questions: “Do I have enough data?” and “Is my data 
clean and robust enough?”

Unfortunately, there are no easy ways to know a priori 
whether your dataset is large enough for the given problem. 
Each problem introduces its own subtleties that the neural 
network must learn to figure out—the subtler the differences 
between the example data, the more examples are necessary 
before the model can figure them out.

A good rule of thumb is to compare the results of your 
cost function between the training and validation sets, also 
known as training loss and validation loss. Commonly we aim 
at having a training loss that is a bit higher than the validation 
loss when performing backpropagation. If the training loss is 
about the same as the validation loss, then your model is un-

5 http://arxiv.org/abs/1411.1792
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derfitting, which means you should increase the complexity of 
the model, adding layers or connections. If the training loss 
is much lower than the validation loss, then your model may 
be overfitting. Solutions to this include decreasing the mod-
el’s complexity or increasing the dataset size (synthetically or 
otherwise).

Furthermore, when training a convolutional neural net-
work, it is useful to look at the actual kernels (see Figure 
16) to gauge the performance of the network while it’s being 
trained. We expect the kernels to be smooth and not look 
noisy. The smoothness of the resulting kernels is a good mea-
sure of how well the network has converged on a set of fea-
tures. Noisy kernels could result from noisy data, insufficient 
data, an overly complex model, or insufficient training time.

One common way to synthetically increase the dataset size 
in an image-based task is through multisampling, where each 
image is cropped in multiple ways and flipped horizontally 
and vertically. Sometimes, noise is even introduced into the 
input every time a piece of data is being shown to the network. 
This method is recommended in every application, not only 
because it increases the dataset size, but also because it makes 
the resulting network more robust for rotated and zoomed-
in images. Alternatively, the dropout method discussed in 
Neural Networks (a type of regularization) can be used. It is 
generally advisable to always use the dropout method with a 
small dropout factor to prevent overfitting whenever there is 
limited data available.

However, if tweaking the model complexity, dataset size, 
or regularization parameters doesn’t fix the validation and 
training losses, then your dataset may not be robust enough. 
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This can happen if there are many examples of one category 
but not many of another (say, 1,000 images of cats but only 
5 of scissors), or if there is a general asymmetry in the data 
that allows the neural network to learn auxiliary features. A 

Figure 21. Training your neural network
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common example of this in image training is the picture’s ex-
posure and saturation. If all pictures of cats are done using 
professional photography equipment and pictures of scissors 
are taken on phones, the network will simply learn to clas-
sify high-quality images as cats. This problem shows itself 
quite often in the use of pretrained networks on social media 
data — many pretrained networks use stock photography as 
their training set since it is highly available, however there 
are vast differences between the quality and subject of stock 
pictures and pictures found on social media websites. One 
solution is normalizing images, a procedure where the mean 
pixel value of the entire dataset is subtracted from each image 
in order to deal with saturation and color issues. However, in 
cases where the dataset the model is being applied to differs 
drastically from the training set, it may be necessary to fine-
tune the model, or start from scratch.

Testing What You’ve Made
Finally, it is important to understand the model you have 

created or intend to use. Even though neural networks are 
non-interpretable models (meaning we cannot gain too much 
insight into the internals of how the model is making the de-
cisions it is), we can at least understand the domain that the 
model is applicable to by looking at the training set and hav-
ing a robust enough test set.

For example, if we create a network that can estimate the 
amount of damage done to a region by a natural disaster us-
ing satellite imagery, what will the model say for regions that 
were completely unaffected? Is it biased to specific architec-
tural or geographical features because of a bias in the dataset? 
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Or maybe those biases simply emerged because the model 
was not robust enough to extract deeper features. Having a 
holdout sample of the dataset that is only used once the mod-
el is fully trained can be invaluable in understanding these 
sorts of behaviors; however, a careful analysis of the dataset 
itself is important.

Furthermore, consideration must be given to cases where 
the neural network fails to give a high-confidence result, or 
simply gives the wrong result entirely. Currently, accuracies of 
>85% at image processing tasks are considered cutting edge; 
however, this means that for any high-volume application 
many incorrect results are being given. Results from a neural 
network also come with confidences, so a threshold in quality 
should be recognized for the given task and downstream ap-
plications should have procedures for when no results match 
the given confidence level. Another route is to use the results 
of the neural network to inform further algorithms in a way 
that can potentially increase the confidence, or at least the 
usability, of the results. In our prototypes, we use a hierarchi-
cal clustering on the predicted labels in order to increase the 
usability of low-confidence results, as described in Dealing 
with Low Confidence. This draws on the intuition that even 
if an image cannot be confidently classified as a cat, most of 
the labels with nonzero confidences will be under the Word-
Net label “animal,” and so “animal” is a sufficiently informa-
tive label to use in such a case.

Timelines
Below are some suggested timelines for working with neu-

ral networks in different situations. It is important to note 
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that these numbers are incredibly approximate and depend 
very much on the problem that is being solved.

Table 1. Neural Network Development Time

Deploying
Deploying a neural network is relatively easy; however, it 

can be quite expensive. The trained model is large — easily 
500 MB for a single moderately sized network. This means 
that git is no longer an adequate tool for versioning and pack-
aging the datafile, and other means should be used. In the 
past, using filename-versioned models on Amazon’s S3 has 
worked quite well, particularly when done with the S3 back-
end for git-annex.

The machine that the model gets deployed on should have 
a GPU and be properly configured to run mathematical oper-
ations on it. This can be difficult initially to set up; however, 
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once installed correctly, backups of the machine can easily 
be swapped in and out.6 The main complication comes from 
installing cuda if you are using an NVIDIA device, as well as 

6 To see the process in AWS, check out http://tleyden.github.io/

blog/2014/10/25/cuda-6-dot-5-on-aws-gpu-instance-running-

ubuntu-14-dot-04/

Figure 22. Recommended architecture for your neural network 

service
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installing cuda-enabled math libraries such as theano, caffe, 
cudnn, cufft, etc.

Once the model file is on a machine properly configured 
to use its GPU, using the neural model is quite the same as 
using any other model. A common route for facilitating a dis-
tributed cluster of these models is to wrap the network itself 
in a thin lightweight HTTP API and deploy it to a cluster of 
GPU-enabled machines. Then, any service in your ecosys-
tem that must take advantage of the model’s power can pick 
a server in this cluster using a round-robin approach—new 
models can be uploaded and, one by one, computers in the 
neural network cluster can be updated without disrupting 
downstream services.

Having a policy for rolling out new models is quite im-
portant. Models generally need to be updated as their usage 
changes and new/different datasets become available that 
could increase their accuracy. It is very much suggested to 
instrument any service that uses the results of the neural net-
work in order to obtain feedback data for use in future train-
ing (for example, asking the user "Was our result good?" or 

“What better response could we have provided?”).

Hardware
As described in Neural Networks, while we think of these 

models as a series of neurons connected to each other with 
various activation functions, the results are actually comput-
ed with a series of vector operations. In fact, most neural net-
works can be seen as simply taking the linear combination of 
vectors, applying some nonlinear function (a popular choice 
is the tanh function), and maybe taking a Fourier transform. 
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These computations are perfectly suited for a GPU, which has 
been optimized at the hardware level to perform linear alge-
bra at high speeds.

This is why NVIDIA has been very strongly pushing for 
using its GPUs for general mathematics as opposed to simply 
gaming. They have even gone as far as creating very special-
ized math libraries that optimize these linear algebra opera-
tions on their devices and, in recent months, developing spe-
cialized neural network hardware for their next-generation, 
computation-specific GPUs.

These considerations have gone from being useful for the 
academic working on these problems to necessary for any-
one working with neural networks — our models are getting 
more and more complex, and the CPU is no longer adequate 
for training or evaluating them. As a result, infrastructure us-
ing neural models must have GPUs in order to function at ac-
ceptable speeds. When working on Pictograph, we found that 
we could perform a single image classification in about 6 sec-
onds on the CPU, vs. 300 ms on the GPU (using the g2.2xlarge 
AWS instance). Furthermore, the operations scale very well 
on a GPU (often incurring almost no overhead if multiple im-
ages are classified together).
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Deep Learning in Industry Today

Neural networks have been deployed in the wild for years, 
but new progress in deep learning has enabled a new gener-
ation of products at startups, established companies, and in 
the open source community.

In the startup community we’ve seen several companies 
emerge with the aim of making deep learning affordable and 
approachable for any product manager or engineer, as well 
as companies that apply deep learning to a specific problem 
domain, such as medicine or security. There’s been similar 
growth in the open source community, as companies and aca-
demics contribute code back to a variety of libraries and soft-
ware packages.

Current applications of deep learning in industry include 
voice recognition, realtime translation, face recognition, vid-
eo analysis, demographic identification, and tagging. We ex-
pect this flourishing of new development to continue over the 
next couple of years as new applications are discovered, more 
data assets appropriate to deep learning become available, 
and GPUs become even more affordable.

Commercial Uses of Deep Learning
The current enthusiasm for deep learning was spawned by 
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a 2012 paper from Google1 describing how researchers trained 
a neural network classifier on extremely large amounts of 
data to recognize cats (many examples used for illustration 
purposes in this paper are a nod to these researchers) Since 
then, big players like Google, Microsoft, Baidu, Facebook, and 
Yahoo! have been using deep learning for a variety of applica-
tions.

All of these companies have a natural advantage in creat-
ing deep learning systems—massive, high-quality datasets. 
They also have expertise in managing distributed computing 
infrastructure, giving them an advantage in applying deep 
learning techniques to real-world problems.

Google has published a follow-up to its 2012 paper,2 and 
is now using deep learning for realtime language translation, 
among other things. Its recent announcement of a realtime 
voice translation service on mobile phones is impressive both 
for the functionality3 and for the application architecture — it 
runs on a standard smartphone.

Facebook formed FAIR,4 the Facebook Artificial 
Intelligence Research Lab, in 2013, and hired Yann Le-
Cun, one of the pioneers of deep learning research and 
a professor at NYU, as its director. FAIR has developed 
face recognition technology that has been deployed 
into an application that allows Facebook users to or-

1 http://arxiv.org/abs/1112.6209

2 http://arxiv.org/abs/1309.4168

3 Who hasn’t wished for a real-life Douglas Adams Babel fish?

4 https://research.facebook.com/ai
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ganize personal photos and share them with friends,5 
 and contributed to numerous open source and academic proj-
ects. FAIR operates from Facebook’s New York Astor Place of-
fice, Menlo Park, CA, and Paris.

Baidu hired Andrew Ng, coauthor of the Google cat paper 
and Stanford professor, to lead their deep learning research 
lab out of Cupertino, CA. Baidu’s Minwa system is a pur-
pose-built deep learning machine for object recognition.

Yahoo! is using image classification to automatically en-
rich the metadata on Flickr, its social photo site, by adding 
machine-generated tags to every photo.6

The relationships between researchers and companies 
are complex because these techniques emerged from a small 
and tight-knit research community that has recently explod-
ed into relevance, with this obscure research area becoming 
one of the hottest areas for hiring among the Internet giants. 
Ideas that may have begun at one institution show up in ap-
plications developed by another, and people often move be-
tween institutions.

Deep Learning as a Service
If you are considering using deep learning but don’t plan 

to develop and train your own models, this section provides a 
guide to companies that offer services, generally through an 

5 See https://research.facebook.com/blog/814042348693053/

fair-opening-up-about-artificial-intelligence-and-facial-recogni-

tion/

6 though not without controversy: see http://mashable.

com/2015/05/21/flickr-auto-tagging-errors/
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API, that you can integrate into your products.

Clarifai
Clarifai7 is a New York-based startup that uses Deep Learn-

ing to recognize objects in still images and video data. Clari-
fai’s models won the 2013 ImageNet competition.

Clarifai’s API allows users to submit an image or video, 
then returns a set of probability-weighted tags describing 
the objects recognized in the image or video and the system’s 
confidence in each tag. The API can also use an image input to 
find similar images. It runs quickly; it is capable of identifying 
objects in video streams faster than the video plays.

Founder Matthew Zeiler says, "Clarifai is building products 
that empower people to understand the massive amounts of 
information they are exposed to daily, making it easy to auto-
matically organize, analyze, and share."

Dextro
New York-based Dextro8 offers a service that analyzes vid-

eo content to extract a high-level categorization as well as a 
fine-grained visual timeline of the key concepts that appear 
onscreen. Dextro powers discovery, search, curation, and ex-
plicit content moderation for companies that work with large 
volumes of video.

Dextro’s models are built specifically for the sight, sound, 
and motion of video; its API accepts prerecorded videos or live 
streams, and outputs JSON objects of identified concepts and 

7 http://www.clarifai.com/

8 https://www.dextro.co/



Deep Learning in Industry Today • 65

scenes with a timeline of their visibility and how prominent 
they were onscreen. Dextro can output in IAB Tier 2, Dextro’s 
own taxonomy, or any partner taxonomy.

Dextro offers a great service for any company that has an 
archive of video content or live streams that they would like to 
make searchable, discoverable, and useful.

David Luan, cofounder of Dextro, describes it as follows: 
"Dextro is focused on immediate customer use cases in re-
al-world video, and excels at user-generated content. Our 
product roadmap is driven by our users; we automatically 
train large batches of new concepts every week based on what 
our partners ask for."

CloudSight

Figure 23. CloudSight recognizes a puppy
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CloudSight9 is a Los Angeles-based company focusing on 
image recognition and visual search. Their primary offer-
ing is an API that accepts images and returns items that are 
identified in those images. They also use this API to power 
two apps of their own: TapTapSee, which helps visually im-
paired uses navigate using their mobile phones, and CamFind, 
which is a mobile visual search tool where users can submit 
images from their cameras as queries.

MetaMind
MetaMind10 offers products that use recursive neural net-

works and natural language processing for sentiment analy-
sis, image object recognition (especially food), and semantic 
similarity analysis. MetaMind is located in Palo Alto, CA, and 
employs a number of former Stanford academics, including 
its founder and CEO, Richard Socher. It raised $8 million of 
capital in December 2014.

Dato
Dato11 is a machine learning platform targeted at data sci-

entists and engineers. It includes components that make it 
simple to integrate deep learning as well as other machine 
learning approaches to classification problems.

Dato doesn’t expose its models, so you are not always cer-
tain what code, exactly, is running. However, it offers fantas-
tic speed compared to other benchmarks. It’s a good tool for 

9 http://cloudsightapi.com/

10 https://www.metamind.io/

11 https://dato.com/
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data scientists and engineers who want a fast, reliable model-
in-a-box.

LTU Technologies
LTU Technologies12 is an image search company founded 

in 1999 that offers a suite of products that search for similar 
images and can detect differences in similar images. For ex-
ample, searching a newspaper page from two different dates 
may reveal two advertisements that are similar except for the 
prices of the advertised product. LTU Technologies' software 
is also geared toward brand and copyright tracking.

Nervana Systems
Nervana Systems13 offers a cloud hardware/software solu-

tion for deep learning. Nervana also maintains an open source 
deep learning framework called Neon,14 which they describe 
as the fastest available. Notably, Neon includes hyperparame-
ter optimization, which simplifies tuning of the model. Based 
in San Diego, Nervana was founded in April 2014 and quickly 
raised a $3.3 million Series A round of capital.

Skymind
Skymind15 is a startup founded by Adam Gibson, who 

wrote the open source package DeepLearning4j.16 Skymind 

12 https://www.ltutech.com/

13 http://www.nervanasys.com/

14 https://github.com/nervanasystems/neon

15 http://www.skymind.io/

16 http://deeplearning4j.org/
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provides support for enterprise companies that use Deep-
Learning4j in commercial applications. Skymind refers to it-
self as "The Red Hat of Open-Source AI for Enterprise."

Unlike other startups listed here, Skymind does not pro-
vide service in the form of an API. Rather, it provides an en-
tire general-purpose deep learning framework to be run with 
Hadoop or with Amazon Web Services Spark GPU systems. 
The framework itself is free; Skymind sells support to help de-
ploy and maintain the framework. Skymind claims that Dee-
pLearning4j is usable for voice-to-text tasks, object and face 
recognition, fraud detection, and text analysis.

Recently Acquired Startups
There have recently been many acquisitions of startups us-

ing deep learning technology. These include Skybox Imaging 
(acquired by Google), Jetpac (also acquired by Google), Look-
flow (acquired by Yahoo!), AlchemyAPI (acquired by IBM), 
Madbits (acquired by Twitter), and Whetlab (also acquired by 
Twitter).

The challenges for independent deep learning startups 
include attracting the necessary talent (generally PhDs with 
expertise in neural networks and computer vision), accessing 
a suitably large and clean dataset, and finally figuring out a 
business model that leads to a reasonable monetization of 
their technology. Given these challenges, it’s not surprising 
that many small companies choose to continue their mis-
sions inside of larger organizations.
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Startups Applying Deep Learning to a Specific 
Domain

Many entrepreneurs are excited about the potential of 
deep learning and are building products that have only re-
cently become possible because of the accessibility of these 
techniques.

Healthcare
Healthcare applications push the boundaries of machine 

learning with large datasets and a tempting market with a 
real impact.

Enlitic,17 a San Francisco-based startup, uses Deep Learn-
ing for medical diagnostics, focusing on radiology data. Deep 
learning is fitting for this application because a Deep Learn-
ing system can analyze more information than a doctor has 
ready access to, and may notice subtleties that are not clear 
to humans.

Atomwise18 is a Canadian startup with offices in San Fran-
cisco that focuses on using deep learning to identify new drug 
candidates, and Deep Genomics19 focuses on computational 
genomics and biomolecule generation.

For quite a long time, analysis of text records has been used 
to improve the patient experience and expand the knowledge 
available to doctors and nurses. However, that information is 
severely limited in scope and detail, simply as a result of being 
a burden to maintain for doctors. The ability to automatical-

17 http://www.enlitic.com/

18 http://www.atomwise.com

19 http://www.deepgenomics.com/
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ly encode the information in images such as x-ray and MRI 
scans into these records would provide a valuable addition-
al source of data, without placing an added burden on the 
healthcare practitioners.

Security
The security domain offers subtle pattern recognition 

problems. Is this server failing? Is that one being compro-
mised by unusual external activity? Deep learning is a fantas-
tic mechanism for this sort of problem since it can be trained 
to understand what “normal operating conditions” are and 
alert when something deviates from it (regardless of whether 
the operators knew whether to intentionally put in a rule or 
heuristic for it). For this reason, neural networks have even 
been used as a backup system to monitor the safety of nuclear 
facilities. As a result, there has been progress in both academ-
ic research20 and industry.

Canary21 offers a home security device that alerts the cus-
tomer’s mobile phone when unusual activity is detected in 
the home.

Lookout22 offers an enterprise mobile predictive security 
solution that identifies potential problems before they man-
ifest.

Marketing
Marketing is an obvious application domain for image 

20 http://dl.acm.org/citation.cfm?id=2713592

21  http://canary.is/

22 https://www.lookout.com
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analysis. Current media analytics products are generally lim-
ited to analyzing text data, and being able to extend that anal-
ysis to images has real value.

One product in this space comes from Ditto Labs,23 a start-
up based in Cambridge, MA. Their analytics product scans 
Twitter and Instagram photos for identifiable products and 
logos, and creates a feed for marketers showing brand analyt-
ics on social media. Marketers can track their own brands or 
competitors' in a dashboard, or use an API.

Being able to identify the demographics of consumers is 
another interesting application that is already in the wild. 
Kairos24 specializes in face recognition and analysis in imag-
es and video. Their SDK and APIs allow customers to identify 
individuals by face as well as estimate the demographics of 
unknown faces (gender, age, emotions, engagement). Final-
ly, they offer a crowd analysis product that automates crowd 
analytics.

Data Enrichment
Document analysis firm Captricity25 offers a product that 

helps established companies with information in paper for-
mat, such as insurance companies, convert this informa-
tion into useful and accurate digital data. Captricity uses 
deep learning to identify the type of form represented in a 
scan — for example, a death certificate — and to recognize 
when form fields are empty.

23 http://ditto.us.com

24 http://www.kairos.com

25 https://captricity.com/
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Neural Network Patents
Our review of patents in the area does not reveal any dom-

inant patent holders or limiting patents in the field. Rather, 
the field seems scattered with only a handful of patents issued 
to a small number of patentees. Given that the quantity and 
quality of data fed into the neural network is a major factor in 
the utility of the system, it is not surprising that there are few 
key patents in the area of deep learning.

There is one notable exception here: NEC Laboratories 
has received a number of deep learning patents, with many 
focused on visual analytical applications and some applica-
tions in text processing. As a few examples, NEC holds US 
Patent No. 8,345,984, covering methods for recognizing hu-
man actions in video images using convolutional neural nets; 
US Patent No. 8,582,807, dealing with gender classification 
and age estimation of humans in video images; US Patent 
No. 8,234,228, covering methods for unsupervised training of 
neural nets; and US Patent No. 8,892,488, focusing on docu-
ment classification.

Open Source Neural Network Tools
The open source landscape for neural network tools is 

quite vast. This stems primarily from the fact that this is a very 
active academic field and is constantly changing. As a result, 
the only tools that can stay on top of the trends are those that 
are open source, have a thriving community, and cater to both 
users and the academics leading the advances in the field. We 
provide a survey here of both the tried and true libraries and 
the ones that the community is the most excited about at the 
time of writing; bear in mind, though, that the landscape is 
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constantly changing. New libraries are sure to be introduced 
to the community, although they will mostly be specially built 
for a particular purpose or built on one of these technologies.

Theano
Theano26 is a Python-based open source tensor math li-

brary that couples tightly with numpy and provides mecha-
nisms for both CPU- and GPU-based computing. As a result, 
theano is used quite heavily when building new types of neu-
ral networks or building existing networks from scratch: code 
can be prototyped quickly yet still run at GPU speeds.

While this library is extremely powerful, it is often overly 
general for those just getting into the field of neural networks. 
However, since most other Python neural network libraries 
use theano in the background, it still can be an incredibly im-
portant tool to understand.

PyBrain2
PyBrain227 is another open-source Python neural network 

library focused on simplicity. It is provided as a layer on top of 
theano, with a simple pipeline for creating neural networks 
from already well understood pieces. As a result, a convolu-
tional neural network can be quickly and easily deployed us-
ing this system.

However, Pybrain2 does not completely hide the internals 
of the models you are creating, and as a result it is used quite 
frequently in academic work when experimenting with new 

26 http://deeplearning.net/software/theano/

27 https://github.com/pybrain2/pybrain2
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network designs or training procedures. As a result, its API 
is rapidly evolving, with new features being added regularly.

Pybrain2 is a good choice for beginners to intermediate us-
ers who want to potentially work with the internals of their 
network but don’t want to reimplement existing work.

Keras
Keras, the final open-source Python library we will look at, 

is the simplest of all the options, providing an extremely sim-
ple and clean API to quickly and easily create networks with 
well understood layers. While it does provide mechanisms to 
see the internals of the network, the focus is on doing a small 
set of things correctly and efficiently.

As a result, many of the recent innovations in neural net-
works can be easily implemented using keras. For example, an 
image captioning network can be implemented and trained 
in just 25 lines of code!28 This makes keras the best choice for 
Python developers looking to play with neural networks with-
out spending too much time working on the internals of the 
model.

Caffe
Caffe is a C++ library created at UC Berkeley, released un-

der the 2-clause BSD license, with a Python library included. 
It is quite fully featured and is generally used as a standalone 
program. In it, most of the common neural network methods 
are already implemented and any customized model can be 
created by simply creating a YAML configuration file. In ad-

28 http://keras.io/examples/
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dition, as mentioned previously, many pretrained models are 
provided through Caffe’s “model zoo,”29 which makes this a 
good option for those wishing to use preexisting models. Fi-
nally, caffe has been accepted by NVIDIA as an official neu-
ral network library and as a result is very optimized to run on 
their GPUs.30

While caffe is quite fast to use and to run, especially if us-
ing a pretrained network, the API is quite unfriendly and in-
stalling it is known to be difficult. The main source of pain 
with the API is understanding how custom data should be 
represented for use with the standalone application. Further-
more, caffe's documentation is quite lacking, which makes 
understanding how to create the YAML configuration for a 
new network tedious. This lack of documentation carries over 
to the Python library, which is just a thin wrapper over the C++ 
library.

In the end, even though caffe is quite a fully featured and 
robust toolkit, it still feels very much like academic code.

However, once the dataset is properly formatted and the 
YAML configuration is error free, caffe is quite fast and pro-
vides all of the benchmarking one would expect from such a 
fully featured application.

Torch
Torch is another neural network library released under 

29 https://github.com/BVLC/caffe/wiki/Model-Zoo

30 Make sure to download the version of caffe from NVIDIA’s GitHub 

repo, as well as their specialized math libraries, in order to take 

advantage of these optimizations.
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the BSD license, written in Lua. At its core, torch is simply a 
powerful tensor library (similar to theano); however, a sys-
tem of modules has been made around it, creating a friendly 
and simple ecosystem for applications in neural networks.31 
Torch has been supported by many of the academic groups 
involved in neural network research, as well as many of the 
industrial research groups, such as Google and Facebook.

Since most usage of Torch is through various communi-
ty-created modules, documentation can be hit or miss. How-
ever, the community has a strong emphasis on good docu-
mentation and sticking with torch's strict and clean design 
practices. In fact, many new neural network libraries (written 
in Lua or in other languages) have been adopting the Torch 
paradigm for creating neural network pipelines. In this pipe-
line, a model definition is created in Lua, as well as a separate 
dataset definition. This is then run through a training script, 
which combines both of these definitions in order to create 
a trained model on the given dataset. This modularization 
makes the resulting code very robust and helps with main-
taining models as datasets change.

The biggest downside to torch is that it is in Lua. While 
Lua is a fantastic language that is gaining traction within the 
academic world (particularly because of the extremely perfor-
mant LuaJIT), it may not be easy to incorporate into existing 
deployment strategies or infrastructures. However, the com-
munity is actively trying to combat this by providing AWS im-
ages in which torch is ready to use and helpful documentation  
 

31 https://github.com/torch/torch7/wiki/Cheatsheet
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giving insight not only into how torch works but why Lua was 
chosen and how to use it effectively.

Brain.js and Convnet.js
Brain.js is a JavaScript neural network library released 

under the MIT license. The library offers a simple and ex-
pressive way of defining, training, and evaluating neural net-
works. Available both as a client-side and a server-side tool, it 
provides a lot of useful possibilities when integrating neural 
networks into a larger web service. It does not carry many of 
the out-of-the box features that many other neural network 
libraries will give you, but instead has the bare-bones algo-
rithms implemented to get you going. Being written in JavaS-
cript, brain.js is a great way to evaluate neural networks, but 
it lacks the optimizations (such as GPU integration) to do effi-
cient training for larger applications.

Convnet.js is another JavaScript neural network library, 
built by Andrej Karpathy and released under the MIT license. 
It brought deep learning into the browser and provides more 
of the technical specifications an AI expert would expect in 
a library. Written to support convolutional neural networks, 
the library has many of the common modules (e.g., fully con-
nected layers and nonlinearities) and cost functions built in. 
convnet.js has particularly been a boon for visualizations and 
demoing, helping people learn about and understand neural 
networks simply and in their browsers. While the library can 
be used to train neural nets, again it is not optimized for pro-
duction systems; however, it does serve its purpose as a tool 
ready for browser deployment.

What makes these libraries exciting is that pretrained 
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models can be put into the browser and evaluated live on the 
client’s machine. Also, as robust JavaScript implementations 
of neural networks, they have a value due to the ubiquity of 
JavaScript applications on the Web.
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Prototypes: Pictograph and Fathom

While researching and tinkering with neural networks, 
there was a surplus of cool applications and interesting prob-
lems appropriate for exploring that practical side of this 
technology. The major drawback was that many compelling 
ideas required large, unavailable (or proprietary) datasets in 
order to get the accuracy and performance we desired. In the 
end, we used images gathered from users on Instagram and a 
model available through Caffe to perform object recognition 
on user-uploaded photos.

Pictograph and Fathom
For this project, we built two prototypes powered by the 

same backend. Our public prototype, Pictograph, uses image 
object recognition to classify a user’s Instagram photos. Our 
client-only prototype, Fathom, allows you to explore our Ins-
tagram data set through computer identified labels and cate-
gories. Together the prototypes demonstrate what is possible 
with out of the box ImageNet image classification systems.

This type of technology is becoming more prevalent in 
larger organizations with large datasets. Even though high 
quality pre-trained models are becoming more and more 
available, the utility of these has not quite yet been shown to 
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end users. Pictograph and Fathom show the new photo explo-
ration possibilities of these models.

Backend
The core of the prototypes is the pre-trained googlenet1 

model from caffe’s model zoo. Out of the box, this model has 
the ability to classify images over 1,000 possible labels. These 
labels are all nouns taken from the WordNet2 corpus and 
include things such as: lampshade, flatworm, grocery store, 
toaster, and pool table. Furthermore, this model is provided 
under an unrestricted license3 and can be easily used with 
Caffe (see Caffe).

Using Caffe’s python bindings, Pycaffe, we were able to 
create a fully featured web application using Tornado as our 
web server. Once the application is started, we load up the 
googlenet model into GPU memory, as well as any other data 
that is necessary to do label disambiguation. By pre-loading 
the model and all auxiliary data needed, we can easily take 
HTTP requests via tornado requesting an image classification 
and route it to the GPU with little overhead. The resulting op-
eration takes about 300ms per image. Having the GPU ready 
for this calculation is critical as it can take up to 7 seconds per 
image if the system is operating in CPU-only mode.

For further optimization, we cache most of the image 
classification results when the user first authenticates in. On  

1 http://arxiv.org/abs/1409.4842

2 https://wordnet.princeton.edu/

3 https://github.com/BVLC/caffe/tree/master/models/bvlc_googlen 

et
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authentication, we fetch all of the user’s images, classify them, 
and insert them into a RethinkDB4 instance. RethinkDB was 
chosen as our backing database due to its ease of use, robust-
ness, and very clean API.

Dealing with Low Confidence
In order to deal with potentially low confidence results giv-

en by the neural model, we chose to use the confidence levels 
over the labels in order to hierarchically cluster the labels. We 
can do this by taking the actual labels (i.e., whale, farm, Egyp-
tian cat) and use them as leaves when building a tree from 
their hypernyms.5 This means that we have a tree with labels 

4 http://rethinkdb.com/

5 A hypernym is a word with a broad meaning that includes more 

specific words. For example, dog is a hypernym of animal.

Figure 24. Sample labels from the model.
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“beagle”, “golden retriever”, and all other dogs, connected un-
der the label dog. And dogs and cats are together under the la-
bel “domestic animal”, all the way up until we reach the most 
general label “entity”.

With the tree built up, we gain the ability to do many sorts 
of operations over sets of label predictions. For example, with 
a single label prediction we can propagate the confidence lev-
els up by setting each hypernym’s value to a weighted aver-
age confidence of its children’s values. With this, if we have 
several medium-confidence predictions over various types of 
dogs, the hypernym "dog" will have a high weight value. This 
basic ability allows us to also do more complicated operations. 
For example, if we wanted to compare two users we can take 
the sum of all of their respective image predictions and then 
take the dot product of those vectors. Putting this resulting 
vector through the hypernym tree will give hypernyms that 
both users take pictures of. Similar operations can be created 
to see dissimilar images and to do them with emphasis on the 
extremely similar/dissimilar labels (Anne takes pictures of 
dogs and Bill does not) or just asymmetries (Bill takes more 
pictures of dogs than Anne).

This step of augmenting the label predictions through a 
clustering scheme is incredibly important when dealing with 
potentially low confidence results. Since the data being sent 
to the model is often a lot more noisy than the original train-
ing dataset (which contained mainly stock photography) the 
actual accuracies we achieve on live data will be substantially 
less than what was advertised for the training data. Instead of 
hand-annotating live data in order to fine-tune the network 
with more realistic data we realized that, while sometimes 
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the confidence in a classification was low, the network was 
generally pointing towards the correct concept. That is to say, 
even though there was no high confidence label for a given 
image of a dog, all of the dog-like labels had higher confidenc-
es than non-dog labels.

In doing the clustering, we are able to hide the low confi-
dence in some classifications while still giving the user useful 
results. In the end, the user may not care whether we classify 
what type of dog is in the image but be more interested sim-
ply that there is a dog. Furthermore, having the taxonomy 
over the possible labels introduces a novel way of navigating 
through the dataset and gaining a deeper understanding of 
the landscape of images being taken.

Figure 25. Sample tree showing confidence propagation.
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Design and Deep Learning
By enabling increasingly accurate image object recogni-

tion and natural language processing, deep learning has the 
potential to open up new design possibilities for social web 
apps. The default organizational view for most social net-
works (e.g., Twitter and Instagram) is the reverse-chronolog-
ical feed, where posts are organized into topic-agnostic con-
tent blocks. Deep learning, by allowing designers to take the 
topic and sentiment of user posts into account, could enable 
new forms of organization and allow for designs that adapt 
themselves to better support different subjects and moods.

Beyond the Feed
In our prototypes we demonstrate how image object rec-

ognition can open up new paths of exploration in Instagram. 
While Instagram does have the capacity to group images to-
gether by category based on hashtags, uneven and idiosyn-
cratic use of tags limits the effectiveness of this system-wide.6  
To have their pictures of a dog appear in the dog hashtag cat-
egory, an Instagram user has to add #dog to each one of the 
relevant photos. In Pictograph and Fathom this classification 
is taken care of, and thanks to our use of hierarchical tree 
classification that category is also automatically included un-
der parent categories such as animal. Because we use image 
object recognition we don’t have to rely on users to input an 
image classification and can therefore include a much larg-

6 While there aren’t numbers for Instagram, on Twitter hashtags 

are only used on 24% of tweets https://blog.bufferapp.com/10-new-

twitter-stats-twitter-statistics-to-help-you-reach-your-followers
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er number of public images from the network in the relevant 
category page.

Figure 26. The dog category page on Fathom

While our prototype focuses on the classifying possibil-
ities of image object recognition, other techniques powered 
by deep learning, such as natural language processing, could 
perform similar classifying and tagging operations for text-
heavy posts. The capability to infer this kind of metadata 
from currently untagged user generated posts could greatly 
increase our ability to discover content by topic—a method of 
exploring that is intuitive to humans but up to now has been 
difficult to support at scale.

The information unlocked by deep learning will have to be 
integrated thoughtfully into current app design conventions. 
Better category classification could allow us to move away 
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Figure 27. A Pictograph user’s pictograph

from reverse-chronological feeds — lengthening the lifespan 
of useful posts. The new info could also be used to improve 
the relevance of search results on social networks. These 
same qualities could also alter the moods of networks, how-
ever. Users may have become accustomed to old posts being 
buried in the stream or not readily visible to people outside 
their friends. For example, while most Instagram photos are 
public, for the non-celebrity the network can still feel like a 
very intimate place. If user photos are made more visible by 
improved classification features, such as the category pag-
es in Fathom, that feeling of intimacy may be lost. Product 
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creators will need to balance the increased access that deep 
learning can enable with user expectations.

While the ability to explore through category pages in 
Fathom can be seen roughly as an improvement to tagged 
category pages, the Pictograph display, where a user’s top four 
most photographed categories are arranged as a proportional 
treemap, suggests some of the new visualizations that will be 
available as these technologies evolve.

Figure 28. Pictograph uses image object recognition to perform 

the kind of evaluation of a user’s profile we usually associate 

with a human (or anthropomorphic robot), on-demand and at a 

large scale.

The pictograph visual moves toward saying something 
about the user’s personality based on classification. This pos-
sibility is only opened up when we have access to information 
about the content of a user’s images.7

Paired with a hierarchical classifying system, this sort of 

7 Again, hashtags could conceivably be used to perform a similar 

function, but real-world use of them is rarely consistent enough to 

support such a project.
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classification could allow designs to adjust to support a user’s 
interests, or to build specially designed experiences around 
specific categories. Graphic designers who have access to 
the mood and content of a piece can design to support and 
enhance those elements. In the past this took the form of a 
designer being given a specific piece, in the future it might 
involve designing for specific mood and topic targets—where 
the content will then be matched to the design by a set of al-
gorithmic classifiers. In this way, deep learning could support 
a return to content-specific design at a scale not previously 
possible.

Failed Prototypes
One common theme from people working with neural 

networks is the amount of failure when trying to build new 
systems. On the way to creating the Pictograph and Fathom 
prototype, we tried many things that simply did not work 
for one reason or another. One reason for this was the time 
limitation—as described in the Timelines section, creating 
new models can be time consuming. Another reason for this 
is availability of data—since we don’t have our own in-house 
datasets outside of data partnerships, finding the interesting 
and compelling problems for the datasets we have can be a 
challenge.

Below is a short list describing of some of the prototype 
ideas we were excited about but did not work. The recurring 
theme is the availability of data—many of the ideas were tech-
nically feasible however require access to clean data that was 
not easily attainable. Constant discussions were had regard-
ing how to clean the data that we could get, from hand label-
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ing to using Amazon Turk, however the cost of these methods 
couple with still not knowing if they would work turned us 
away from them. This serves as a testament to how important 
data quality is when creating neural systems.

Giphy
Giphy8 is a search engine for animated GIFs. Anima-

tions are human annotated with tags that refer to the con-
tent of the animation with tags varying from "cat" to "cute" or 

"shock". Our goal was to predict tags given an animation using 
video classification methods.9 However, we faced many chal-
lenges when trying to create such a system.

The first challenge was dealing with the variability in GIF 
data. GIFs have multiple standards that all deal with key-
framing differently. This makes it so that when you are pars-
ing an animation, great care must be taken to make sure the 
representations you have for each frame are correct and with 
minimal noise. In addition to simply extracting frames, many 
decisions had to be made for creating a neural system where 
framerates could be so variable. In general neural-video pro-
cessing, videos can be assumed to run at a standard framer-
ate. GIFs, on the otherhand, operate at a wide variety of frame 
rates (from 0.5 frame/second to 60 frames/second).

More important, however, was dealing with the quality of 
the tags. For typical image classification problems, the labels 
that are being extracted are very simple. Even when asking a 
human to do the comparable task, it is very simple to answer 

8 http://giphy.com/

9 http://cs.stanford.edu/people/karpathy/deepvideo/
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whether there is a dog in an image, but it is much more a mat-
ter of opinion whether an image portrays "shock" or "happy". 
For a neural method to be able to make such identifications 
we need both a large set of examples in addition to a deep net-
work in order to extract the relevant features. In the end, we 
were not able to train a large enough model with the given 
dataset given our timeline.

Nutrition
Seeing the wealth of images online of food, we also had 

the idea of creating a system which would take in an image of 
a dish and output the nutritional content of a dish. The plan 
was to find a repository with the nutritional content of vari-
ous dishes, search for the dish on Flickr10 and train out model 
using this data.

The main problem with this attempt was the quality of the 
data. Here, since we were joining two different datasets (the 
nutritional content and the images of the food) the possibility 
for bad data was multiplied. First, nutritional data for dishes 
is not very available. There are many sites that claim to pro-
vide the nutritional content of dishes (along with their reci-
pes), however there are large discrepancies among the sites. 
This is probably because there are multiple ways to make a 
given dish, all of which contain slightly different ingredi-
ents and different quantities of them. In the end, one set of 
data was chosen as the "ground truth" simply because of the 
breadth of dishes that had data (including calorie, fat, protein, 
and carbohydrate content). This would also be a good bench-

10 http://flickr.com
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mark for whether the system could work at all and whether it 
was worth it to put more time and resources in a potentially 
more accurate nutritional database.

Once we had some semblance of nutritional data we had to 
acquire images of each dish. The idea was to search Flickr for 
the dish names along with certain phrases to select for imag-
es of food (such as “dish” and “food”). We keep the dish in our 
dataset if we were able to find 1,000 relevant images. Howev-
er, upon doing a data quality check, it was evident that many 
pictures of a dish are of people cooking the dish as opposed to 
the final dish itself. This meant that many images of "burri-
tos", for example, were actually of a dish of rice or avocados 
that were being prepared for the final dish. In addition to sim-
ply being the wrong image for a given dish label, these images 
had overlap with other dishes (for example a salad) which fur-
ther confused the neural network’s internal representation of 
the data.

In the end, data quality was the primary reason this experi-
ment failed. With images that were labeled under burrito that 
looked like a salad, pictures of a cutting board with a knife or 
a steaming pot for many of the dishes, and other such exam-
ples, there was no coherent features that could be extracted 
to discriminate between one dish or another. This problem 
persisted whether we tried to train a new neural network or 
frame it as a transfer task; as we trained the system we would 
constantly get wildly fluctuating results, an indication that 
the model couldn’t converge on relevant image features. Fur-
thermore, we found out later that it is indeed possible—sever-
al days after we put this experiment away Google announced  
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it had done a similar task of assigning caloric value to the  
image of a dish.11 

11 http://www.popsci.com/google-using-ai-count-calories-food-

photos
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Ethics of Deep Learning

When we create a data product, we must consider not 
just the mathematical and computational aspects of the al-
gorithm, but what the product experience of that algorithm 
feels like and the opportunities for it to go awry. Considering 
the worst-case scenario is not just something for Philip K. 
Dick and Ursula LeGuin; it must also be done conscientiously 
by engineers and product designers.

Deep Learning requires some creative thinking, for a num-
ber of reasons.

Uninterpretability
With deep learning, feature engineering is left to the algo-

rithm. Therefore, you are never entirely certain what a spe-
cific feature represents, or even ultimately why the algorithm 
assigned the label that it produced. In machine learning we 
call this kind of algorithm uninterpretable.

Back in Neural Networks, we saw that neural networks 
learn by adjusting the weights and biases that connect and 
activate neurons. This simple strategy gives us great compu-
tational power, but reveals to us nothing about what any of 
these numbers or connections actually mean. That is, the un-
derlying heuristics are nearly impossible to interpret. If the 
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network encoded a feature based on race, there would be no 
easy way to figure this out or correct it. It is analogous to how 
neuroscientists and philosophers can’t discover properties of 
consciousness by simply looking at brain scans. This is a par-
ticular concern for companies working in highly regulated 
industries.

These risks are on the radar of many government and busi-
ness leaders. Consider White House Counselor John Podesta 
warning students at the UC Berkeley School of Information, 

“We have a strong legal framework in this country forbidding 
discrimination based on [race, ethnicity, religion, gender, 
age, and sexual orientation] criteria in a variety of contexts. 
But it’s easy to imagine how big data technology, if used to 
cross legal lines we have been careful to set, could end up re-
inforcing existing inequities in housing, credit, employment, 
health, and education.”1

This is not a purely theoretical concern. Google’s image 
recognition software recently tagged two people of color as 

“gorillas,” and labeled a photo of the concentration camp at 
Auschwitz as a “jungle gym.”2 Unfortunately, due the com-
plexity of the system, the quick fix for the former offensive 
result was to simply eliminate the “gorilla” tag from the sys-
tem entirely.

Uninterpretable systems are also vulnerable to propagat-
ing biases in the original source data. In one example, an ad 

1 http://m.whitehouse.gov/sites/default/files/docs/040114_remarks_

john_podesta_big_data_1.pdf

2 http://www.theguardian.com/technology/2015/jul/01/google-sor-

ry-racist-auto-tag-photo-app
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server was observed advertising more higher-paying jobs to 
men than to women.3 It’s extremely doubtful that any engi-
neer designed that interaction, but it’s important to acknowl-
edge the possibility of a system that uses gender, ethnicity, 
or socioeconomic status as a proxy for potential success in a 
highly abstracted feature space.

There is a further threat of having a system that does not 
have an inherent bias, but merely misinterprets a profile due 
to constraints in understanding context (see Neural Net-
works for more on this). Take as an example those who are 
unjustly investigated and sometimes even prosecuted for 
crimes due to perceived “involvement” because they have 
family or friends that are involved in criminal activity. We see 
this as unethical because one cannot help where one is born, 
and thus one’s family and, to some extent, choice of friends. 
However, the issue here is that the data and profile surround-
ing the innocent person look a lot like those of the individu-
als involved in the crimes. Again we find a scenario in which 
neural networks could fundamentally misinterpret someone 
whose profile looks like it matches a certain classification. The 
consequences of such a misinterpretation must be consid-
ered carefully as delivery of such a system proceeds.

Some data leaders have recently proposed a method of 
“bias testing” that would develop metrics for evaluating and 
monitoring the likely bias of a deployed model. This is an ac-
tive area of discussion and research.

3 https://www.andrew.cmu.edu/user/danupam/dtd-pets15.pdf
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Edge Cases: Liability and Error
Even with a model that is mathematically near perfect, 

there may be product consequences. Current deep learning 
systems typically achieve accuracy rates from 80-95%. But 
what about the >5% of results that are wrong?

Some examples of this kind of unfortunate edge case are 
Google’s data-driven overestimation of the scope of the influ-
enza risk during the winter of 2012-2013, which left hospitals 
and clinics underprepared,4 Facebook’s Year in Review show-
ing a user photos of his recently deceased daughter,5 and neu-
ral networks that mislabel images due to human-impercepti-
ble distortions.6

As we enter a world where more neural networks are doing 
work across our business, state, and private ecosystems, we 
must take seriously the potential of an edge case causing se-
rious harm. We are already seeing businesses forced to apol-
ogize publicly or settle cases due to social or emotional trau-
mas inflicted upon individuals. We expect these incidents to 
occur more frequently as more products enter the market. 
Most of these technologies have obvious benefits — medical 
diagnoses, predictive traffic modeling, maintenance predic-
tion — but the cost of an incorrect outcome may be monu-
mental and it is unclear where the liability lies.

4 http://www.nature.com/news/when-google-got-flu-

wrong-1.12413

5 http://www.theguardian.com/technology/2014/dec/29/facebook-

apologises-over-cruel-year-in-review-clips

6 http://arxiv.org/pdf/1312.6199v4.pdf
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Unethical Applications
As this report is being written, The Future of Life Institute 

has already received signatures from over 1,000 robotics 
and AI researchers petitioning for a global ban on the devel-
opment of weaponized AI. This intersects directly with the 
development of deep learning, since computer vision and 
classification would both be major components of intelli-
gent weaponry. While these technologies could be very good 
at their intended purposes and sometimes put people out of 
harm’s way, the potential to do bad seems high. This is an on-
going subject of debate among academics and people in the 
field.

If we zoom out from this stigmatized issue, we can find 
other application areas that carry similar face-value prob-
lems. Take for instance the possibility of a neural network 
that could profile online users or customers as vulnerable 
sales targets for high-interest loans. Given the data financial 
institutes have, this would be a fairly straightforward appli-
cation for training a neural network. Yet, we recognize this as 
an unethical business practice that takes advantage of asym-
metries in information and unfairly leverages socioeconomic 
data to place emotional pressure on people who want a better 
life. There have already been applications showing the pos-
sibility of this type of threat, such as Google advertising bail 
bonds to people with traditionally African-American names7 
and Facebook’s recent patent to help lenders do loan discrim-

7 http://techcrunch.com/2013/02/05/googles-unintentionally-rac-

ist-ads-probably-have-awful-psychological-impacts/
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ination based on the applicant’s social network connections.8

We can find many examples where data is available to train 
a neural network to do something of questionable moral value. 
Price discrimination could easily be implemented by learning 
from online profiles and guessing the maximum price to dis-
play to a consumer. More insidious practices can be imagined 
where neural networks are trained to identify people taking 
part in protests, to deanonymize account information, or to 
discover personal vulnerabilities. In each of these cases, the 
application of a neural network provides one party with ex-
ploitative influence over another due to asymmetric access to 
or ownership of data.

What You Can Do
There are a few strategies used in the industry for avoid-

ing these issues. The most basic and important of these strat-
egies is taking appropriate time to consider the impact your 
system may have on a user—that is, having a good answer to 
the question, "What does it mean to a user if our system is 
wrong?" Preemptively recognizing edge cases and having an 
increased awareness of failure will help prevent surprises and 
improve the expectations of the users. It is expensive to train 
and retrain deep learning models, so reasonable forethought 
can save time and energy later.

Of course, these limitations cannot always be known in 
advance, but prepared engineering teams will always test 

8 http://venturebeat.com/2015/08/04/facebook-patents-technolo-

gy-to-help-lenders-discriminate-against-borrowers-based-on-so-

cial-connections/
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their systems against diverse inputs. This is where consider-
ing a combination of edge cases and consequences alongside 
a robust testing protocol goes a long way. Testing your data 
against the unexpected user, or even the contrived worst-case 
scenario, will reveal a lot about the expected performance of 
the system and the potential errors. This is all good hygiene 
for robust systems.
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The Future

Looking ahead, neural networks show a lot of promise to 
become widely used tools in many kinds of products and sys-
tems. More than other areas of AI, the potential for them to 
grow is very high. This is because, unlike other areas of AI and 
machine learning, once a model has been trained, it will be 
very simple to take an out-of-the-box system and incorporate 
it into a larger service. Even more important, the ability to 
take a highly-tuned model and merely swap out a single layer 
and re-train it to fit a new problem (this is called a transfer 
task, which we’ll explore in depth below) will lower the barri-
er to making useful systems.

The exact path into the future will depend on progress 
in several complementary technologies (namely GPUs). Re-
gardless, there are a number of promising applications and 
emerging areas that seem guaranteed to be influenced in the 
coming years. Through this section we will outline a number 
of those and attempt to shed some light on where the road of 
neural networks will take us.

Future of Academic Research
Serving as an extension of the current research, many 

types of extended convolutional neural network models have 
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been created in order to solve specific problems or to extend 
the utility of the original model. First, current convolutional 
neural networks operate on images that are approximately 
227 x 227 pixels. By increasing computational and algorithmic 
power of these systems, larger images can be analyzed and 
potentially yield more accurate results. Furthermore, sparse 
multi-dimensional convolutional networks have been creat-
ed which can work on arbitrary point-cloud data as opposed 
to a fixed image.1 By working on a point-cloud, information 
can be learned about 3D models. This could lead to major ad-
vances in robotic automation where a neural network pow-
ered robot could make inferences about the space it sees from 
its Kinect-like imag sensors. In addition, there has been work 
on networks like SimNet2 which take the lessons learned 
from convolutional networks (such as parameter sharing and 
pooling) and extend them to new operations outside of con-
volutions. This will make it possible to apply such models on 
a much more diverse dataset as long as the appropriate convo-
lution-like operation can be defined.

The technique with a more promising future is recurrent 
neural networks, which allow a layer of neurons to have con-
nections to any other layer regardless of that layer’s position 
in the network (this is the very thing that feed forward neural 
networks disallow). The ability to have backwards connec-
tions gives the network an understanding of temporal rela-
tionships which is important when doing sequence classifi-
cation such as predicting the next word in a sentence or using 

1 http://arxiv.org/abs/1505.02890

2 http://arxiv.org/abs/1506.03059
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multiple frames of a video to classify what is being shown. In 
fact, for robotics this sort of object classification is gaining 
more importance since it produces much less noise when do-
ing object detection with a moving camera.3 Recurrent neural 
networks have also been shown to produce very robust lan-
guage models which can be used in a wide variety of appli-
cations, from tagging sentences, to extracting entities in an 
article, to captioning images. In fact, the image-captioning 
demonstration that was shown to the press used a convolu-
tional neural network to feed into a recurrent neural network 
language model.

Figure 29. With recurrent neural networks, we allow backward 

connections between layers. In this case, the hidden layer uses 

the input layer  and  the output layer to compute its value. This 

encodes a time dependency, which is why recurrent networks 

are fantastic at sequence analysis.

3 http://arxiv.org/abs/1506.03059
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A beautiful aspect of recurrent neural networks is that they 
are Turing complete. This means that we can consider the 
trained weights of a recurrent neural network (RNN) to repre-
sent the definitions of a program that can compute anything 
that a normal computer could. It turns the form of backprop-
agation that runs on it into a pseudo-programmer that pro-
grams the RNN in order to solve a particular task. This may 
seem like a novelty, however the underlying theory proves the 
exceptional nature of RNN’s; while feed forward networks are 
universal approximators and can approximate any decidable 
problem, RNN’s are Turing complete and can fully compute 
any decidable problem!

Another subfield gaining popularity are transfer task ori-
ented networks. As discussed in Fine Tuning / Transfer 
Learning, transfer tasks are when we train a model for one 
problem and test it on another problem. The exciting part 
about transfer tasks becoming a higher priority in the field of 
deep learning is that it ushers in our models learning to de-
scribe the world as it is as opposed to simply what the data 
tells it. That is to say, even though we are simply teaching the 
model to classify a cat versus a dog, the model itself learns 
deeper features than the simple task demanded from it and 
essentially is smarter than the problem needs. This is par-
ticularly exciting in light of data being seen as an imperfect 
representation of a slice of the world—a model being good at 
a transfer task means that it is learning to see through this 
limited vantage point and arrive at understandings about the 
world.

We are still a long way away from having very generaliz-
able models that work on wide arrays of transfer tasks. How-
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ever these tasks are becoming a larger part of deep learning 
research and at the same time we are gaining more "neural 
power" with recurrent neural networks. This makes us con-
fident that recurrent neural networks with large focus on 
transfer tasks are the most promising avenue for the future of 
artificial intelligence.

Finally, very practically, there is work on making neural 
networks smaller and easier to compute. This work has mul-
tiple fronts, both on the hardware side in making GPUs more 
powerful and making the actual models smaller. One partic-
ularly interesting attempt at making the models smaller is to 
use lower precision numbers within the model (e.g., storing 
3.1 instead of 3.14159).4 This has the potential of simplifying 
the computational overhead of neural networks and making 
them more widespread on mobile and embedded devices.

2030: The World Deep Learning Built
On the road towards a more unified scheme for artificial 

intelligence, there will also be many intermediary capabilities 
which will bring the benefits of deep learning to many new 
fields.

There have recently been advances in turning sequences 
of 2D video frames into full featured 3D models of an environ-
ment. Although this is possible without a neural method, the 
current models are able to deal with noise and more exotic 
scenes much more robustly than previously possible. This 
has been quite a boon for robotics—it’s one thing for your 
Roomba to be able to understand the layout of your space, but 

4 http://arxiv.org/abs/1502.02551
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quite another to have it un-
derstand the objects, what 
they are and how to inter-
act with them.

These sorts of alternate 
uses of convolutional lay-
ers of neural networks (e.g., 
switching the fully connect-
ed layers from a convolu-
tional neural network with 
other types of layers) have 
already been around for a 
couple years. For example, 

using Q-Learning5 computers have been trained to learn how 
to play Atari games.6 This training was done by simply letting 
the computer see the screen as a series of images, giving it a 
method of pressing buttons on the controller and also telling 
it what its current score is. This was enough for the system 
to learn how to interpret the gameplay and the relevant visu-
al queues on screen in order to get a high score!7 This sort of 
learning in which a computer learns the intricacies of a sys-
tem and how to interact with it to get a desired outcome is in-
credibly exciting for robotics and control systems in general!

Another great innovation we are starting to see is the com-
bination of linguistic models with other models. For example, 

5 http://mgazar.net/academic/SQLCamReady.pdf

6 https://www.cs.toronto.edu/~vmnih/docs/dqn.pdf

7 For a demo of a comparable system, see: http://cs.stanford.edu/

people/karpathy/convnetjs/demo/rldemo.html

Figure 30. Recurrent neural 

networks have mastered Atari 

games
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recently we have been able to combine an image model with 
a recurrent language model in order to automatically and ro-
bustly caption images.8 These captions are not templates or 
from a database, but rather a linguistic representation the 
model itself has created given an image! This sort of capa-
bility could be expanded for use in accessibility services for 
the blind or as a general-service natural language generation 
method.

On the other hand, the problem could also be inverted 
where language is the input and something else is the out-
put. For example, a user could describe an object and have the 
model interpret the meaning and create the desired object. 
In the year 2050, will we simply tell our home computer that 
we’d like a vase to hold 12 flowers in the shape of a Klein bottle 
and have our in-house 3D printers hear that, create the model 
and print one for us?

We could also imagine applications where image process-
ing is advanced to a degree where it can understand subtleties 
that currently require human experts. For example, a system 
could be built that takes in video frames from someone’s 
phone and helps them diagnose problems with their cars. As 
the network builds predictions, it can be fed back to the user 
as a request to zoom into particular parts of the car for further 
inspection. We are already seeing this sort of trend in expert 
neural network systems in the field of healthcare where data 
is already in a computer-usable format. In that field, neural 
networks are taking in MRI data, along with patient data, in 
order to aid doctors in diagnosis.

8 http://arxiv.org/abs/1411.4555
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Conclusion

Deep learning gives us the ability to analyze the contents 
of rich media, and, for the first time, gain insight into what is 
actually inside of those objects. We are just at the beginning 
of understanding how this set of techniques will be useful, 
and the results are already impressive. We can scan a social 
network and show you where people are disproportionately 
taking photos of oceans or mountains, look at your genom-
ics or radiology data and make cheap and better healthcare 
recommendations, and find that photo of Aunt Margaret that 
you scanned in from a shoebox with one simple query.

We are more optimistic for the future development of deep 
learning than for any other form of machine learning. While 
this report specifically explores image analysis, we will soon 
see these techniques applied in other areas, and we believe 
this text provides a sound introduction to the principles nec-
essary to understand and utilize modern neural networks.

In this report we have explored the history and mathemat-
ical foundations of the field, along with current applications 
and a survey of companies and open-source products that are 
in the market today. We’ve also speculated about what the 
near future holds. In the longer term, the ability for an algo-
rithm to do feature engineering without the assistance of an 
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engineer has the potential to change the way we build data 
processing systems. Even if image object analysis is irrelevant 
to your interests, this underlying change in how we conceive 
and engineer algorithms will affect your work.

In our prototypes, Pictograph and Fathom, we have demon-
strated the utility of current image analysis techniques on a 
corpus of social photo data. This is interesting because the 
data is interesting—we are gaining new insight into human 
behavior through the lens of our collective desire to take 
smartphone photographs—but it is also a strong demonstra-
tion of the merits and challenges of these algorithmic tech-
niques: we know if you’ve taken a photo of a Beagle puppy, 
but we don’t yet know whether you were sad while you were 
doing it.

We remain optimistic for the future of Deep Learning, not 
just for image analysis, but for a variety of applications across 
industries. We expect to see this technique used for many 
more applications in a variety of industries over the next 
couple of years, and to see more breakthrough capabilities 
emerge from this research in the years beyond that.
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